
Adventure Works: The ultimate source for outdoor equipment

Riley Tallman

CSE 310

Professor Nakamura

Spring 2018

Word Unscrambler Design Process

For every permutation:

1. Read every line of a text file dictionary

2. Compare with the current permutation

3. Print it if it was a match

Permutations: 𝑛!

Permutations*235969 = number of comparisons

Big-Theta of 𝑛!

Original Design:

• Decide average linked list iteration: 8
▫ Make 8 comparisons on average to see if a permutation matches anything

in the dictionary

• Searching time for one permutation:θ 8 = θ 1

• Searching time for all permutations: θ 1 ∗ θ 𝑛! = θ 𝑛!

• Big-Theta is the same, but its much faster than previous because we do
not have to compare 235,969 words. We only compare 8 on average.

Next Design: Hash Table with chaining

• 235,969 words / 8 average linked list = 29,495.125

• Closest power of 2 = 32,768

• Closest prime number = 29,501

• Size of table = 29,501

• Actual average searching time: 235,969 / 29,501 = 7.998 comparisons

Hash Table with chaining

Initialization

• Create dictionary array of linked list with the size of the dictionary

• Read text file with dictionary words

• The word is the key
▫ Hash the key

▫ Insert into array at the end of the linked list

1. Large enough to achieve highest index location (29,500)

2. Variety in operations
Need more than just add and subtract

3. Use as many variables as possible
Using constants will result in the same values for the same letters

Choosing Good Hash Function

Longest linked list = 24
Empty indices = 33 --> means good average
Took less than 4 seconds to initialize

• 1,2,3 Letter
words

• 4,5,6 Letter
words

• 7,8,9 Letter
words

• 10 Letter words

• 11 Letter words

• Takes a looong time

• Reduce average searching time from 8 to 4 or something.
▫ Uses more memory

• Alphabetized Linked List?
▫ If the key is less than the head of the linked list then do not check the rest

of the list

• Check key.length()?
▫ If the length of the key does not equal the word then do not compare the

individual letters.

• Always have n! permutations of the letters -> θ 𝑛!

Improvements

Thank you

Riley Tallman

