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ABSTRACT 

91% of smartphone and tablet users experience a problem with their 

device screen being oriented the wrong way during use [11]. In [11], 

the authors proposed iRotate, a previous solution which uses 

computer vision to solve the orientation problem. We propose 

iLieDown, an improved method of automatically rotating 

smartphones, tablets, and other device displays. This paper 

introduces a new algorithm to correctly orient the display relative to 

the user’s face using a convolutional neural network (CNN). The 

CNN model is trained to predict the rotation of faces in various 

environments through data augmentation, uses a confidence 

threshold, and analyzes multiple images to be accurate and robust. 

iLieDown is battery and CPU efficient, causes no noticeable lag to 

the user during use, and is 6x more accurate than iRotate. 

1     INTRODUCTION 

The current basic method to orient handheld displays on devices like smartphones and 

tablets is to use gravity. Unfortunately, this method fails when a user lies down to one side, 

or when the device is flat as Figure 1(a) illustrates. In a survey of 513 smartphone and 

tablet users from 2012, 91% reported that they have experienced incorrect autorotation 

with their devices, and 42% answered that they experience it several times a week or more 

[11]. To combat this issue, devices commonly have a native software feature to lock their 

orientation. For example, the original Apple iPad (released in 2010) has a hardware switch 

to lock and unlock the native orientation. This solution requires user input, and 58% of 

users forget to unlock the orientation [11]. These statistics show a need for a solution. 

We propose iLieDown which correctly orients a display requiring no user input. This paper 

introduces a new robust algorithm in section 2 which analyzes multiple images from the 

front-facing camera using a VGG-style convolutional neural network (CNN) [13]. 
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iLieDown yields correct orientation because it rotates the display relative to the user’s face 

and how the device is being used rather than simply relative to gravity. Experiments in 

section 3 show that iLieDown is battery efficient, robust, and does not introduce noticeable 

lag when rotating.   

Figure 1:  Correct vs Incorrect Rotation.  The user lies down and the screen 

rotates incorrectly in (a), but correctly in (b). 

2     AUTOMATIC FACE ROTATION  

We present iLieDown which uses gravity to detect rotation changes, then uses a CNN to 

provide correct orientation. It is possible to constantly analyze images using a CNN without 

gravity-based input, but this is inefficient as Table 4 shows. An efficient approach is to 

only analyze images when a change in rotation of the device is detected by using the 

accelerometer. Unfortunately, this method cannot orient a display when the device is flat 

because gravity cannot be used to detect rotation changes. 

 

Figure 2:  iLieDown Overview.  Rotation is detected relative to gravity, then 2 images are 

analyzed by the CNN. If the analyses have low confidence or inconsistency, more images are 

captured and analyzed, otherwise, the display is oriented correctly according to the user’s face. 
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Once a rotation change is detected, it is immediately known that there are only two possible 

orientations: the previous orientation or one relative to gravity (portrait or landscapeLeft 

in Figure 2, step 1). This is because there is always only one orientation relative to gravity, 

and there is the possibility that the user has lied down in which the display should remain 

at the previous orientation. The next step is to capture images from the front-facing camera 

and analyze them with a CNN. At this point, more images are captured and analyzed if 

there is low confidence or inconsistency in the analysis. Finally, iLieDown either confirms 

that the gravity orientation is correct or will override gravity orientation and keep the 

previous orientation. With this method, the user can lie down and maintain correct 

orientation on their device without explicit input.  

2.1    CUSTOM CNN 

We’ve created and trained a custom convolutional neural network to identify the face of 

the user and thereby determine correct orientation. Orienting a display is framed as a 4-

class classification problem to classify a single input image as one of four orientations: 

portrait, upsidedown, landscapeLeft, and landscapeRight.  

Architecture Design.   The CNN architecture is most important for engineering efficient 

image analysis models. The size and efficiency of CNNs are characterized by the number 

of parameters they have, which depends on the architecture. The number of parameters 

directly influences the number of calculations that are executed during image analysis, and 

more calculations take more time. A CNN that is too big (has too many parameters) will 

not be able to analyze images quickly. On the other hand, a CNN that is too small will not 

learn very well and will have many misclassifications [14]. 

 

Figure 3:  Network Architecture.  Images are scaled once to 128x128 pixels then fed through a 

series of 3x3 convolutions with a stride of 1 in both 𝑥 and 𝑦 directions, batch normalization, and 

ReLU activation. After max-pooling, those layers are repeated 4 times. The last two layers are fully 

connected. 

Our network needs to be small enough to quickly analyze images so that the user does not 

notice lag before rotation. Figure 3 shows our implementation of a VGG-B style [13] 

network which is composed of four iterations of two convolutional layers followed by a 
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single max-pooling layer. This architecture was selected because of its small size and 

simplicity. 

Training.   We modified the Helen dataset [15] to train our network because the majority 

of images had faces that were looking at the camera lens, which is like how a user would 

be looking at a smartphone or tablet’s display while using it. To create our training data, 

every image was flipped horizontally, then rotated three times. Finally, the images were 

scaled down to 128x128 pixels. Additional data augmentation was used during training 

such as minor random rotations and brightness alterations. The images were also linearly 

blurred to simulate the user shaking their device while rotating. These techniques create a 

robust training set which allows our model to generalize well and increase accuracy.  

The model was trained using categorical cross-entropy, so it outputs four numbers that sum 

to 1, each representing the confidence of the image belonging to its class (examples in 

Table 2). During training, a dropout layer [16] was used after each max-pooling layer to 

prevent overfitting. Our final network achieved 0.997 validation accuracy with 23,090 

parameters.  

2.2    ALGORITHM DETAILS 

Algorithm 1 shows the core logic of how iLieDown makes decisions. It is called when the 

device changes rotation relative to gravity. 

 

Confidence.     Misclassification may occur if an image is terribly blurry, dark, or bright, 

or if the user’s face is obstructed. To combat this, we define a confidence threshold 𝒄 on 

line 6. In order for the CNN to override gravity-based orientation, it needs to reach a 

confidence greater than some threshold 𝒄 on two consecutive images that it analyzes. If the 

Algorithm 1 Classifier with Confidence Threshold and Multiple Image Analysis 

  1:   imageQueue = analyzeImages(𝒙 − 1) 
  2:   do: 

  3:        imageQueue += analyzeImages(1) 
  4:        override = true 

  5:        for image in imageQueue:  

  6:             if  image.confidence < 𝒄  or  isInconsistent(image.prediction): 

  7:                  override = false 

  8:        if override:  

  9:             return ‘OVERRIDE’ 

10:        imageQueue.pop 

11:   while (not analyzed 𝒏 images) 

12:   return ‘Low Confidence or Inconsistent’ 
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first two images fail to meet the confidence threshold, then the program will continue to 

analyze images from the front camera up to 𝒏 images.  

Consistency.     The isInconsistent function ensures that the current image has predicted 

an orientation consistent with the other predictions from images in the imageQueue: if the 

orientation differs, then it is not consistent. The function also verifies that the prediction is 

one of the two possible orientations out of four because only two orientations are possible 

when rotating: relative to gravity and previous orientation. This is depicted in step 1 of 

Figure 2 when iLieDown knows that either a landscapeLeft or portrait orientation is 

possible. 

ImageQueue.    iLieDown analyzes a set of images (the imageQueue) to ensure 

correctness. This technique is analogous to using multiple keys to authorize a military 

strike in movies: all keys need to work in order to execute the operation. The parameter 𝒙 

specifies how many images, or keys, to use in order to override gravity. The loop on line 5 

ensures that all images in the imageQueue are above the confidence threshold and are 

consistent. Setting 𝒙 greater than 1 helps prevent misclassifications. 

Multiple Images.     To be robust, the algorithm may analyze up to 𝒏 images than are in 

the initial imageQueue. When the CNN is not confident or if the predictions are 

inconsistent, an image in the imageQueue is discarded and one new image is analyzed. 

This creates a sliding window that shifts over one image in the camera feed up to 𝒏 times. 

A total of 𝒏 images may be analyzed, but “OVERRIDE” is returned (line 9) as soon as 

iLieDown is confident with its prediction. Thus, as few as 𝒙 images will be analyzed. 

 

Table 2: Sample Outputs and Results from Algorithm 1. Parameters: 𝑥 = 2, 𝑐 = 0.75, 𝑛 = 3. 

CNN(1) is the first analyzed image, and CNN (2) is the second. 

 

Model 

Class Confidence 

Result 
portrait 

upside 

down 

landscape 

Left 

landscape 

Right 

Gravity    1 
OVERRIDE: 

portrait 
CNN (𝟏) 0.93 0.05 0.01 0.01 

CNN (𝟐) 0.93 0.06 0.01 0.00 

Gravity    1 
Low Confidence: 

landscapeRight 
CNN (𝟏) 0.54 0.23 0.11 0.12 

CNN (𝟐) 0.56 0.20 0.11 0.13 

CNN (𝟑) 0.51 0.26 0.11 0.12  
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2.3    EXAMPLE OUTPUT 

iLieDown either returns “Low Confidence or Inconsistent” and the display is oriented 

based on gravity, or returns “OVERRIDE” and gravity is overridden. In Table 2, parameter 

𝒙 equals 2 which means two successive images must meet threshold and consistency 

requirements. In the first sample output, the result is an override because both images are 

above a confidence of 0.75 and are consistent. In the second example however, the first 

two analyzed images are below the confidence threshold. When this happens, a third image 

is analyzed and the first one is dropped. Unfortunately, the third image has low confidence 

as well, so the CNN predictions are discarded, and iLieDown falls back on gravity 

orientation. No more images are analyzed because 𝑛 is set to 3, which is the maximum 

number of images to analyze before giving up and using gravity. 

3     EXPERIMENTS 

We tested iLieDown in real-world environments to gauge its effectiveness. Using 20 

participants (14 male) we organized two tests and asked survey questions.  

Speed test.     In order to determine if there was any noticeable lag introduced with 

Automatic Face Rotation, users tested the speed of rotations on two apps: one with native 

rotation in iPhone Operating System (iOS) 12.4 (presumably gravity) and one running 

iLieDown. Users were asked to identify if they were the same speed or if one was faster 

than the other on an iPhone 6 and an iPhone XS.  

 

 Native is faster iLieDown is faster Same speed 

iPhone 6 7 0 13 

iPhone XS 3 2 15 

Table 4. Noticeable Lag Responses. Users compared the rotation speed of 

native rotation vs iLieDown. Parameters 𝑥, 𝑛, and 𝑐 were set to 2, 8, and 0.75 

respectively (see Algorithm 1). 

 

The majority of users were unable to determine which app was faster, especially on the 

iPhone XS with its faster processor. From the results in Table 4, we conclude that 

iLieDown introduces no noticeable lag to the user on an iPhone XS, and that most users 

will not be able to notice lag on an iPhone 6.  

Of course, iLieDown does in fact take more time because of the additional image 

processing. On average, it takes 32 milliseconds (ms) to analyze a single image on an 

iPhone 6, and just 9ms on an iPhone XS (Table 5). We asked users if they would enable or 

disable iLieDown knowing that there may be some minor lag during each rotation and all 

20 happily users responded that they would enable the feature.  
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Real-World Performance.     20 different users were instructed to keep the device in 

portrait and then lay down while it was recorded if iLieDown oriented the display correctly. 

Then, still laying to one side, the user successively rotated the device 4 times, pausing at 

each rotation to read a portion of on-screen text. This was then repeated for the other side, 

and data was collected at each rotation. To best simulate real-world use, users were 

unaware of the camera taking images and they were given a webpage with text to read and 

scroll as necessary. Furthermore, tests were performed in random locations on couches and 

beds to provide various backgrounds and lighting conditions for the CNN. Overall, 

iLieDown correctly oriented the display in 61% of trials. This is near a 6x improvement 

over the previous solution from [11] who reported 10.7% accuracy with similar tests. 

Privacy Survey.     We asked users if they would use Automatic Face Rotation (as if it 

were programmed into the operating system) knowing that the front camera takes pictures 

every time the device is rotated. 18 users said they would use it, and 2 said it depended on 

the device manufacturer’s reputation since some companies have a history of negligence 

and/or intentional misuse of users’ data.  

We then asked if users would allow random anonymous image data to be collected to 

improve iLieDown. 10 users said yes, 3 said it depended on the manufacturer’s reputation, 

and 6 said they would not allow it. One responded that they would allow it only if they 

could choose what pictures were sent. For example, a notification to review the images 

would allow them to deny or allow them to be sent.  

CNN Speed.     We timed the exact speed of our custom CNN (23,090 parameters) by 

recording the milliseconds it took to analyze 2, 5, and 8 images. Table 3 shows the average 

of those values over 20 trials. Note that the iPhone 6 had a setting that reduced peak 

performance on the processor. Two tests were conducted with this setting on and off. 

CPU and Memory Usage.     We collected data about the CPU and memory usage 

using Xcode 10.3. In Table 3, Max CPU shows what percentage of the processing 

power iLieDown uses when it runs during a rotation with 𝑛 set to 2 and 8 images.  

 

 Average time to analyze images (milliseconds) 

 2 5 8 1* 

iPhone 6~ 65 163 260 33 ± 2 

iPhone 6 66 158 263 33 ± 2 

iPhone XS 20 47 77 9 ± 2 

Table 5.  Average time taken to analyze images. The time in milliseconds 

to analyze 2, 5, and 8 images averaged over 20 trials. *Average time per 

image plus or minus the standard deviation across all trials. ~Battery health 

at 87% maximum capacity and “performance management applied”  
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 Default 

Camera* 

Analysis at 

30 FPS~ 

Max CPU+ 

2 images 8 images 

iPhone 6  1.5% 20% 4.5% 7.5% 

iPhone XS 0.5% 7% 1.5% 2.2% 

Table 3.   CPU Usage of iLieDown. *Capturing images from the front camera at 30 

frames per second (FPS) with default settings in iOS 12.4. ~Average over 2 minutes 

during constant analysis of 30 FPS. +The maximum amount of CPU used during a 

single rotation. 

4     RELATED WORK 

Our work is most related to the work of [11] who presented iRotate: an automatic screen 

rotation method by augmenting the gravity-based solution. They used the same technique 

of running a facial detection algorithm when a rotation change is detected and orienting the 

screen based on the user’s face. Instead of creating a custom CNN, they used a pre-built 

facial feature detection API from iOS 5. The API was not well suited for the application, 

and the authors deemed it infeasible to use after reporting 10.7% success rate with 20 

participants. This paper builds on their solution and proposes a custom CNN and introduces 

a novel algorithm for analyzing multiple images. Nonetheless, the authors presented great 

statistics about the when and how frequently incorrect rotation occurs. 

Another camera-based approach attempted to rotate a display by tracking the head tilt of 

user’s faces [6]. Unfortunately, this suffered from a narrow range of degree tilt (about 47 

degrees away from portrait in total) [7]. 

Gravity-based solutions are popular, and various types of sensors have been used including 

mercury switches [1] and one or more accelerometers [2, 3, 8]. These give incorrect 

rotations when a user lies down or when the device is flat, but offer a manual toggle to 

correct it. Our solution fixes the problem when a user lies down, and requires no user input.  

Further methods use the way a user holds their phone to distinguish orientations. One 

solution explores the position of thumbs on the edges of the front screen [9], and another 

senses an entire grasp from the placement of fingers around the edges and the palm on the 

back [10]. iRotateGrasp was one such method that used 44 capacitive sensors to Figure out 

the grasp of the user. The implementation was successful, and when tested against 6 users 

it achieved 80.9% average validation accuracy and 90.4% average accuracy when trained 

specifically to one user. This solution will work in complete darkness, but it requires 

additional sensors located on the outside of devices. 
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5     DISCUSSION AND FUTURE WORK 

We presented a method that correctly orients displays on handheld devices without user 

input. A video demonstration [17] effectively shows the problem that iLieDown solves. 

The proposed framework, iLieDown, uses a convolutional neural network and a novel 

algorithm to analyze images from the front-facing camera. It introduces no noticeable lag 

compared to the native rotation in iOS 12.4 and remains battery efficient given limited 

resources. In real-world tests, iLieDown has decent accuracy in various environments and 

lighting conditions.  

Automatic Face Rotation can likely be improved with additional pre-processing techniques 

on captured images such as edge detection and noise reduction. This would allow the CNN 

to be more robust towards various lighting conditions.  

In our custom CNN we classified all four orientations, however, the upsidedown 

orientation can most likely be omitted in the future. We asked 20 users how often they use 

their devices upsidedown, and just 1 user responded about once a week. By omitting 

upsidedown, there will be fewer classes to predict and the CNN can be smaller and 

therefore more efficient.  

An alternative solution to using a CNN could be to use an infrared (IR) camera. IR cameras 

can capture information in extreme low-light environments and can capture depth of 

objects. Newer devices already use this technology to analyze faces for security [4,5].  

The second most common source of incorrect rotation is when a device is flat [11]. In this 

situation, gravity cannot be used to detect rotation changes. An algorithm to periodically 

analyze images from the front camera might be able to solve this issue.  
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