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ABSTRACT

The goal of the Kaggle competition “Predicting Molecular Properties” was 

to predict the scalar coupling constant (the magnetic interaction) between 

atom pairs in molecules, given the two atom types (e.g., C and H) and the 

molecular structure in three-dimensional space. Before the competition, the 

calculation of the constant, while possible, was time consuming and 

impractical. In order to improve the efficiency of calculations, we took a 

data driven approach with machine learning to estimate the scalar coupling. 

Using an ensemble of boosted decision trees, we accurately estimated the 

scalar coupling constant and placed in the 80th percentile on the 

competition leaderboard.

• NVIDIA DGX Workstation: 4X Tesla V100 GPUs, 128 GB GPU RAM, 

2,560 Tensor Cores, 20,480 CUDA cores, Intel Xeon E5 2.2 GHz 20-

core, 256 GB system RAM, running Ubuntu Linux OS 16.04.4 LTS

• Kaggle Molecular Properties Dataset: molecular structure (3D 

coordinates), atom types, and bond type for 85k molecules [1]

• Quantum-Machine Datasets: computed geometric, energetic, electronic, 

and thermodynamic properties for 134k stable small organic molecules 

made up of Carbon, Hydrogen, Oxygen, Nitrogen, and Flourine [3]

• Open-Babel: python library used to extract 27 features like orbital 

energies, molecular mass, and orthogonal angles between atoms for the 

Kaggle molecules [4] 

MATERIALS

Original Data: The original data from Kaggle consists of atom types 

(carbon, hydrogen, etc), relative Cartesian coordinates of atoms within 

each molecule (x, y, and z), and the number of intermediate bonds between 

two atoms (the bond type). The target is called the scalar coupling constant. 

This amounts to a total of five features and a single continuous (regression) 

prediction target [1].

Feature Engineering: After aggregating the provided Kaggle dataset with 

other open-source datasets from OpenBabel and Quantum Machine, we 

created new features with statistics based on categorical features. For 

instance, grouping by molecule and calculating the mean distance between 

atoms creates a new feature called molecule_dist_mean. This process is 

repeated for all categorical features and all numerical features, and for 

other statistics like standard deviation, minimum, and maximum. Next, 

additional features were created by adding, subtracting, and dividing 

numerical features by other numerical features. In turn, this approach 

generated over 1000 features for our models. 

FEATURE ENGINEERING

The team tested the feature set against multiple supervised learning 

algorithms including polynomial regression, gradient boosted random 

forests, and neural networks. We built numerous neural networks varying 

in depth, width, regularization, dropout, and optimization algorithms using 

Keras. Furthermore, the team took various unorthodox approaches to 

improve performance, like converting the regression problem into a 

classification problem (by rounding the scalar coupling constant to one 

decimal place and making each unique number a category) and creating 

eight different models based on a categorical feature with eight categories.

Our highest performing algorithm used eight models, each employing an 

ensemble of gradient-boosted random forests. Using the LightGBM library 

developed by Microsoft to construct the models, we achieved a mean 

absolute error of 0.27 [5]. Overall the team placed in the 80th percentile of 

the competition, out of over 2,000 teams. 

𝑀𝐴𝐸 =
1

𝑛
෍

𝑖=1

𝑛

|𝑦𝑖 − ො𝑦𝑖|

Scoring Metric: Mean Absolute Error (MAE)

RESULTS
The winner(s) of the competition will be submitting their source code 

as open source software under the MIT license (no limitations to use, 

copy, modify, distribute, and/or sell copies of the software). This 

way, researchers will have unrestricted access to a powerful tool that 

may assist in creating new medicines and developing drugs.
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INTRODUCTION

Using state-of-the-art methods from quantum mechanics, it is possible to 

accurately calculate scalar coupling constants given only a 3D molecular 

structure as input. However, these quantum mechanics calculations are 

extremely expensive (days or weeks per molecule), and therefore have 

limited applicability in day-to-day workflows. A fast and reliable method 

to predict these interactions will allow medicinal chemists to gain structural 

insights faster and cheaper, enabling scientists to understand how the 3D 

chemical structure of a molecule affects its properties and behavior. 

Ultimately, such tools will enable researchers to make progress in a range 

of important problems, like designing molecules to carry out specific 

cellular tasks, or designing better drug molecules to fight disease. This 

project aims to develop an 

algorithm that can predict the 

magnetic interaction between 

two atoms in a molecule (i.e., 

the scalar coupling constant), 

and bypass the expensive 

quantum mechanics 

calculations altogether[1].

FEATURE ANALYSIS

Out of all 1000 features, we tested each one's individual importance 

to the scalar coupling constant using machine learning. As shown 

above, many of the best features were engineered features. Our 

experimental results support the hypothesis that the data-driven 

approach can significantly improve a predictive model. For a 

complex scientific competition such as this, the data-driven approach 

was very effective and revealed new insights surrounding the scalar 

coupling constant.


